1502. Can Make Arithmetic Progression From Sequence
🟩 Easy
A sequence of numbers is called an arithmetic progression if the difference between any two consecutive elements is the same.
Given an array of numbers arr
, return true
if the array can be rearranged to form an arithmetic progression. Otherwise, return false
.
Example 1
Input: arr = [3,5,1] Output: true Explanation: We can reorder the elements as [1,3,5] or [5,3,1] with differences 2 and -2 respectively, between each consecutive elements.
Example 2
Input: arr = [1,2,4] Output: false Explanation: There is no way to reorder the elements to obtain an arithmetic progression.
Constraints
2 <= arr.length <= 1000
-10^6 <= arr[i] <= 10^6
Hint-1
Consider that any valid arithmetic progression will be in sorted order.
Hint-2
Sort the array, then check if the differences of all consecutive elements are equal.
Solution
My Solution
func canMakeArithmeticProgression(arr []int) bool {
sort.Ints(arr)
d := arr[1] - arr[0]
for i:=2; i<len(arr); i++ {
if arr[i]-arr[i-1] != d {
return false
}
}
return true
}
Optimal solution
func canMakeArithmeticProgression(arr []int) bool {
n := len(arr)
if n < 2 {
return true
}
// Find min and max
min, max := arr[0], arr[0]
for _, num := range arr {
if num < min {
min = num
}
if num > max {
max = num
}
}
// Check if difference is integer
diff := (max - min) / (n - 1)
if (max-min)%(n-1) != 0 {
return false
}
// Use a set to track elements
seen := make(map[int]bool)
for _, num := range arr {
if (num-min)%diff != 0 {
return false
}
seen[num] = true
}
return len(seen) == n
}

Leetcode: link
Last updated
Was this helpful?