🪙
Leetcode
  • Content
  • Algorithms
    • Linear Search
    • Binary Search
    • Counting Sort
    • Merge Sort
    • Insertion Sort
    • Selection Sort
  • Array and String
    • Introduction to Array
      • Introduction to Array
      • Introduction to Dynamic Array
      • Find Pivot Index
      • Largest Number At Least Twice of Others
      • Plus One
    • Introduction to 2D Array
      • Introduction to 2D Array
      • Diagonal Traverse
      • Spiral Matrix
      • Pascal's Triangle
    • Introduction to String
      • Introduction to String
      • Immutable String - Problems & Solutions
      • Add binary
      • Implement strStr()
      • Longest Common Prefix
    • Two-Pointer Technique
      • Two-pointer Technique - Scenario I
      • Reverse String
      • Array Partition I
      • Two Sum II - Input array is sorted
      • Two-pointer Technique - Scenario II
      • Remove Element
      • Max Consecutive Ones
      • Minimum Size Subarray Sum
    • Conclusion
      • Array-related Techniques
      • Rotate Array
      • Pascal's Triangle II
      • Reverse Words in a String
      • Reverse Words in a String III
      • Remove Duplicates from Sorted Array
      • Move Zeroes
  • Linked List
    • Singly Linked List
      • Introduction - Singly Linked List
      • Add Operation - Singly Linked List
      • Delete Operation - Singly Linked List
      • Design Linked List
    • Two Pointer Technique
      • Two-Pointer in Linked List
      • Linked List Cycle
      • Linked List Cycle II
      • Intersection of Two Linked Lists
      • Remove Nth Node From End of List
      • Summary - Two-Pointer in Linked List
  • Problems
    • 1. Two Sum
    • 2. Add Two Numbers
    • 7. Reverse Integer
    • 9. Palindrome Number
    • 11. Container With Most Water
    • 12. Integer to Roman
    • 13. Roman to Integer
    • 14. Longest Common Prefix
    • 15. 3Sum
    • 21. Merge Two Sorted Lists
    • 26. Remove Duplicates from Sorted Array
    • 27. Remove Element
    • 28. Find the Index of the First Occurrence in a String
    • 34. Find First and Last Position of Element in Sorted Array
    • 35. Search Insert Position
    • 43. Multiply Strings
    • 49. Group Anagrams
    • 50. Pow(x, n)
    • 54. Spiral Matrix
    • 58. Length of Last Word
    • 66. Plus One
    • 67. Add Binary
    • 69. Sqrt(x)
    • 73. Set Matrix Zeroes
    • 75. Sort Colors
    • 88. Merge Sorted Array
    • 104. Maximum Depth of Binary Tree
    • 121. Best Time to Buy and Sell Stock
    • 122. Best Time to Buy and Sell Stock II
    • 136. Single Number
    • 146. LRU Cache
    • 189. Rotate Array
    • 206. Reverse Linked List
    • 217. Contains Duplicate
    • 219. Cotains Duplicate II
    • 226. Invert Binary Tree
    • 238. Product of Array Except Self
    • 242. Valid Anagram
    • 268. Missing Number
    • 283. Move Zeroes
    • 350. Intersection of Two Arrays II
    • 383. Ransom Note
    • 389. Find the Difference
    • 412. Fizz Buzz
    • 414. Third Maximum Number
    • 445. Add Two Numbers II
    • 448. Find All Numbers Disappeared in an Array
    • 459. Repeated Substring Pattern
    • 485. Max Consecutive Ones
    • 509. Fibonacci Number
    • 637. Average of Levels in Binary Tree
    • 657. Robot Return to Origin
    • 682. Baseball Game
    • 704. Binary Search
    • 705. Design HashSet
    • 709. To Lower Case
    • 724. Find Pivot Index
    • 876. Middle of the Linked List
    • 896. Monotonic Array
    • 860. Lemonade Change
    • 905. Sort Array By Parity
    • 916. Word Subsets
    • 941. Valid Mountain Array
    • 976. Largest Perimeter Triangle
    • 977. Squares of a Sorted Array
    • 1041. Robot Bounded In Circle
    • 1051. Height Checker
    • 1089. Duplicate Zeros
    • 1232. Check If It Is a Straight Line
    • 1275. Find Winner on a Tic Tac Toe Game
    • 1295. Find Numbers with Even Number of Digits
    • 1299. Replace Elements with Greatest Element on Right Side
    • 1342. Number of Steps to Reduce a Number to Zero
    • 1346. Check If N and Its Double Exist
    • 1476. Subrectangle Queries
    • 1480. Running Sum of 1d Array
    • 1491. Average Salary Excluding the Minimum and Maximum Salary
    • 1502. Can Make Arithmetic Progression From Sequence
    • 1523. Count Odd Numbers in an Interval Range
    • 1572. Matrix Diagonal Sum
    • 1672. Richest Customer Wealth
    • 1768. Merge Strings Alternately
    • 1752. Check if Array Is Sorted and Rotated
    • 1769. Minimum Number of Operations to Move All Balls to Each Box
    • 1790. Check if One String Swap Can Make Strings Equal
    • 1800. Maximum Ascending Subarray Sum
    • 1822. Sign of the Product of an Array
    • 1930. Unique Length-3 Palindromic Subsequences
    • 1991. Find the Middle Index in Array
    • 2185. Counting Words With a Given Prefix
    • 2235. Add Two Integers
    • 2236. Root Equals Sum of Children
    • 2270. Number of Ways to Split Array
    • 2381. Shifting Letters II
    • 2559. Count Vowel Strings in Ranges
    • 2610. Convert an Array Into a 2D Array With Conditions
    • 2657. Find the Prefix Common Array of Two Arrays
    • 3042. Count Prefix and Suffix Pairs I
    • 3105. Longest Strictly Increasing or Strictly Decreasing Subarray
    • 3151. Special Array I
    • 3223. Minimum Length of String After Operations
Powered by GitBook
On this page
  • Example 1
  • Example 2
  • Example 3
  • Constraints
  • Solution
  • Approach Analysis
  • Visualization of Both Approaches
  • Complexity Analysis
  • Why Both Solutions Work
  • When to Use Each
  • Common Patterns & Applications
  • Interview Tips

Was this helpful?

Edit on GitHub
  1. Problems

206. Reverse Linked List

Previous189. Rotate ArrayNext217. Contains Duplicate

Last updated 5 months ago

Was this helpful?

🟩 Easy

Given the head of a singly linked list, reverse the list, and return the reversed list.

Example 1

list

Input: head = [1,2,3,4,5] Output: [5,4,3,2,1]

Example 2

Input: head = [1,2] Output: [2,1]

Example 3

Input: head = [] Output: []

Constraints

  • The number of nodes in the list is the range [0, 5000].

  • -5000 <= Node.val <= 5000

Follow up: A linked list can be reversed either iteratively or recursively. Could you implement both?

Solution

My Solution (Iterative)

/**
 * Definition for singly-linked list.
 * type ListNode struct {
 *     Val int
 *     Next *ListNode
 * }
 */
func reverseList(head *ListNode) *ListNode {
    var (
        prev, curr, next *ListNode
    )
    curr = head

    for curr != nil {
        next = curr.Next
        curr.Next = prev
        prev = curr
        curr = next
    }

    return prev
}

Optimal Solution (Recursive)

func reverseList(head *ListNode) *ListNode {
    // Base case: empty list or single node
    if head == nil || head.Next == nil {
        return head
    }
    
    // Recursively reverse the rest of the list
    rest := reverseList(head.Next)
    
    // Fix the connections
    head.Next.Next = head
    head.Next = nil
    
    return rest
}

Approach Analysis

This classic problem can be solved in two main ways:

  1. Iterative Approach (Your Solution):

    • Uses three pointers for explicit control

    • Reverses links one by one

    • Very space efficient

    • Great for interviews

  2. Recursive Approach (Optimal):

    • Elegant divide-and-conquer

    • Reverses from back to front

    • More mathematical

    • Cleaner code

Visualization of Both Approaches

Iterative Process

Initial: 1 -> 2 -> 3 -> 4 -> 5
Step 1:  nil <- 1    2 -> 3 -> 4 -> 5
Step 2:  nil <- 1 <- 2    3 -> 4 -> 5
Final:  nil <- 1 <- 2 <- 3 <- 4 <- 5

Recursive Process

Initial Call Stack:
reverseList(1->2->3->4->5)
  reverseList(2->3->4->5)
    reverseList(3->4->5)
      reverseList(4->5)
        reverseList(5)
          return 5

Unwinding:
5 is new head
4->5->4 becomes 5->4
3->4 becomes 4->3
2->3 becomes 3->2
1->2 becomes 2->1

Complexity Analysis

Iterative Solution

  • Time: O(n)

    • Single pass through list

    • Constant work per node

    • No repeated work

  • Space: O(1)

    • Only three pointers

    • Constant extra space

    • True in-place reversal

Recursive Solution

  • Time: O(n)

    • Visits each node once

    • Constant work per node

    • Same as iterative

  • Space: O(n)

    • Recursive call stack

    • One frame per node

    • Not truly in-place

Why Both Solutions Work

  1. Iterative Approach:

    • Maintains clear invariants

    • Never loses track of nodes

    • Very mechanical process

    • Easy to visualize

  2. Recursive Approach:

    • Assumes subproblem solved

    • Works backwards elegantly

    • More mathematical thinking

    • Cleaner implementation

When to Use Each

  1. Choose Iterative When:

    • Memory is constrained

    • Large input expected

    • Maximum performance needed

    • Interview setting

  2. Choose Recursive When:

    • Code clarity priority

    • Small to medium input

    • Teaching/learning

    • Quick implementation needed

Common Patterns & Applications

  1. Similar Problems:

    • Reverse Linked List II

    • Palindrome Linked List

    • Swap Nodes in Pairs

  2. Key Techniques:

    • Multiple pointer manipulation

    • Recursion on linked structure

    • Link reversal

    • Stack usage (implicit/explicit)

Interview Tips

  1. Discuss Both Approaches:

    • Mention space trade-offs

    • Explain time complexity

    • Discuss pros and cons

    • Show knowledge depth

  2. Common Pitfalls:

    • Not saving next pointer

    • Stack overflow in recursion

    • Infinite loops

    • Lost references

  3. Testing Strategy:

    • Empty list

    • Single node

    • Two nodes

    • General case

    • Check all links

list

Leetcode:

link
result